1	Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1
2 3 4 5 6 7 8 9	Short author list: Neeltje van Doremalen ¹ , James O. Lloyd-Smith ^{3.5} , Vincent J. Munster ¹ Full author list: Neeltje van Doremalen ^{1*} , Trenton Bushmaker ^{1*} , Dylan H. Morris ^{2*} , Myndi G. Holbrook ¹ , Amandine Gamble ³ , Brandi N. Williamson ¹ , Azaibi Tamin ⁴ , Jennifer L. Harcourt ⁴ , Natalie J. Thornburg ⁴ , Susan I. Gerber ⁴ , James O. Lloyd-Smith ^{3.5} , Emmie de Wit ¹ , Vincent J. Munster ¹
10 11	1 Laboratory of Virology Division of Intramural Research, National Institute of Allergy and
12	Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
13	2. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
14	3. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los
15	Angeles, CA, USA
16	4. Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers
17	for Disease Control and Prevention, Atlanta, GA, USA.
18	5. Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
19	
20	[*] These authors contributed equally to this article

21 To the Editor,

45

22	A novel human coronavirus, now named severe acute respiratory syndrome coronavirus 2
23	(SARS-CoV-2, referred to as HCoV-19 here) that emerged in Wuhan, China in late 2019 is now causing a
24	pandemic ¹ . Here, we analyze the aerosol and surface stability of HCoV-19 and compare it with SARS-
25	CoV-1, the most closely related human coronavirus. ² We evaluated the stability of HCoV-19 and SARS-
26	CoV-1 in aerosols and on different surfaces and estimated their decay rates using a Bayesian regression
27	model (see Supplementary Appendix). All experimental measurements are reported as mean across 3
28	replicates.
29	
30	HCoV-19 remained viable in aerosols throughout the duration of our experiment (3 hours) with a
31	reduction in infectious titer from $10^{3.5}$ to $10^{2.7}$ TCID ₅₀ /L, similar to the reduction observed for SARS-CoV-
32	1, from $10^{4.3}$ to $10^{3.5}$ TCID ₅₀ /mL (Figure 1A).
33	HCoV-19 was most stable on plastic and stainless steel and viable virus could be detected up to
34	72 hours post application (Figure 1A), though the virus titer was greatly reduced (plastic from $10^{3.7}$ to
35	10 ^{0.6} TCID ₅₀ /mL after 72 hours, stainless steel from 10 ^{3.7} to 10 ^{0.6} TCID ₅₀ /mL after 48 hours). SARS-CoV-
36	1 had similar stability kinetics (polypropylene from $10^{3.4}$ to $10^{0.7}$ TCID ₅₀ /mL after 72 hours, stainless steel
37	from $10^{3.6}$ to $10^{0.6}$ TCID ₅₀ /mL after 48 hours). No viable virus could be measured after 4 hours on copper
38	for HCoV-19 and 8 hours for SARS-CoV-1, or after 24 hours on cardboard for HCoV-19 and 8 hours for
39	SARS-CoV-1 (Figure 1A).
40	Both viruses exhibited exponential decay in virus titer across all experimental conditions, as
41	indicated by linear decrease in the log ₁₀ TCID ₅₀ /mL over time (Figure 1B). HCoV-19 and SARS-CoV-1
42	exhibited similar half-lives in aerosols, with median estimates around 1.1-1.2 hours, and 95% credible
43	intervals of [0.64, 2.64] hours for HCoV-19 and [0.78, 2.43] hours for SARS-CoV-1 (Figure 1C, Table
44	S1). Half-lives on copper were also similar between the two viruses. On cardboard, HCoV-19 showed a

considerably longer half-life than SARS-CoV-1. Both viruses showed longest viability on stainless steel

46 and plastic: the median half-life estimate for HCoV-19 was roughly 5.6 hours on steel and 6.8 hours on

47	plastic (Figure 1C, Table S1). Estimated differences in half-life between the two viruses were small
48	except for on cardboard (Figure 1C, Table S1). Individual replicate data were noticeably noisier for
49	cardboard than other surfaces (Figures S1–S5), so we advise caution in interpreting this result.
50	
51	Our findings show that the stability of HCoV-19 and SARS-CoV-1 under the experimental
52	circumstances tested is similar. This indicates that differences in the epidemiology of these viruses likely
53	arise from other factors, including high viral loads in the upper respiratory tract and the potential for
54	individuals infected with HCoV-19 to shed and transmit the virus while asymptomatic ^{3,4} . Our results
55	indicate that aerosol and fomite transmission of HCoV-19 are plausible, as the virus can remain viable
56	and infectious in aerosols for multiple hours and on surfaces up to days. This echoes the experience with
57	SARS-CoV-1, where these modes of transmission were associated with nosocomial spread and
58	superspreading events ⁵ , and provides guidance for pandemic mitigation measures.
59	
60	References
61 62 63	 Coronavirus disease (COVID-2019) situation reports. 2020. (Accessed 26th of February 2020, at https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.) Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus

- 64 (2019-nCoV) Originating in China. Cell Host Microbe 2020.
- 65 3. Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020.
- 4. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of
 Infected Patients. N Engl J Med 2020.
- 69 5. Chen YC, Huang LM, Chan CC, et al. SARS in hospital emergency room. Emerg Infect Dis 2004;10:782-8.
- 71

- and HCoV-19 were aerosolized in a rotating drum maintained at 21-23°C and 65% RH over three hours.
- 74 Viable virus titer is shown in TCID₅₀/L air. For surfaces, viruses were applied on copper, cardboard, steel
- and plastic maintained at 21-23°C and 40% RH over seven days. Viable virus titer is shown in
- 76 TCID₅₀/mL collection medium. All samples were quantified by end-point titration on Vero E6 cells. Plots
- show the mean and standard error across three replicates. B) Regression plots showing predicted decay of

⁷² Figure 1. Viability of SARS-CoV-1 and HCoV-19 in aerosols and on different surfaces. A) SARS-CoV

78	virus titer over time; titer plotted on a logarithmic scale. Points show measured titers and are slightly
79	jittered along the time axis to avoid overplotting. Lines are random draws from the joint posterior
80	distribution of the exponential decay rate (negative of the slope) and intercept (initial virus titer), thus
81	visualizing the range of possible decay patterns for each experimental condition. 150 lines per panel: 50
82	lines from each plotted replicate. C) Violin plots showing posterior distribution for half-life of viable
83	virus based on the estimated exponential decay rates of virus titer. Dot shows the posterior median
84	estimate and black line shows a 95% credible interval. Experimental conditions are ordered by posterior
85	median half-life for HCoV-19. Dotted line shows Limit of Detection (LOD), $3.33 \times 10^{0.5}$ TCID ₅₀ /L air for
86	aerosols, $10^{0.5}$ TCID ₅₀ /mL media for plastic, steel and cardboard and $10^{1.5}$ TCID ₅₀ /mL media for copper.

87

